Power station closures

- what next for workers and the environment?

NSW power stations are both big employers and big polluters.

The closures dates are in the calendar, 2023, 2025, 2029, 2033...

Hear from speakers and join the discussion

Lake Macquarie

Doyalson RSL Thursday September 8th, 6-8pm

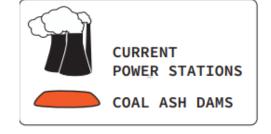
Hunter

East Maitland Bowling Club Thursday September 15th, 6-8pm

Register online at: hcec.org.au

Welcome to Wonnarua Country

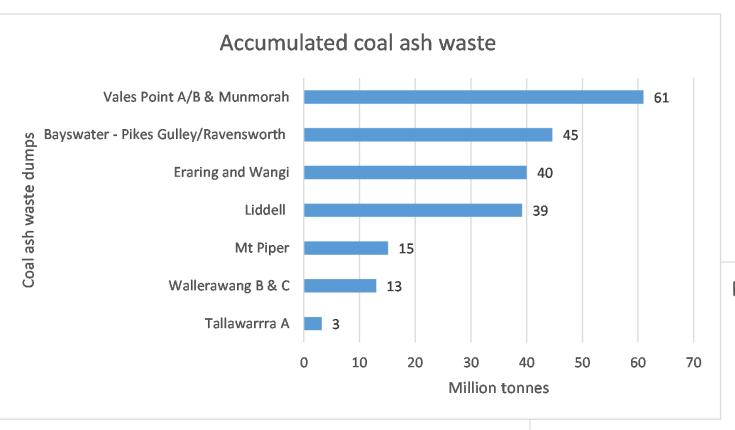
Scott Franks CEO Tocomwall


NSW coal-ash impacts

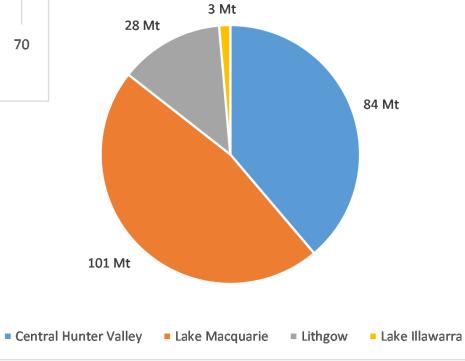
September 2022

Overview

- Legacy coal-ash waste in NSW
- NSW Treasury's Baseline Contamination Assessments
- HCEC sampling results
- Metal bioaccumulation in water birds
- The true cost of coal ash.



'n

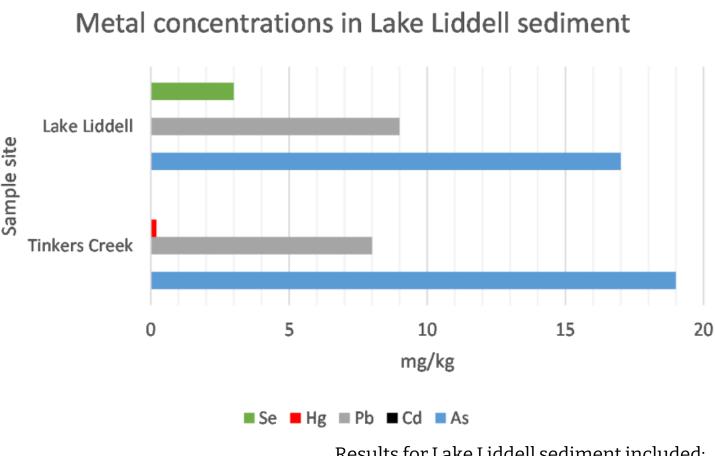


COAL ASH AT LITHGOW: 28 MILLION **TONNES**

> 3 MILLION **TONNES**

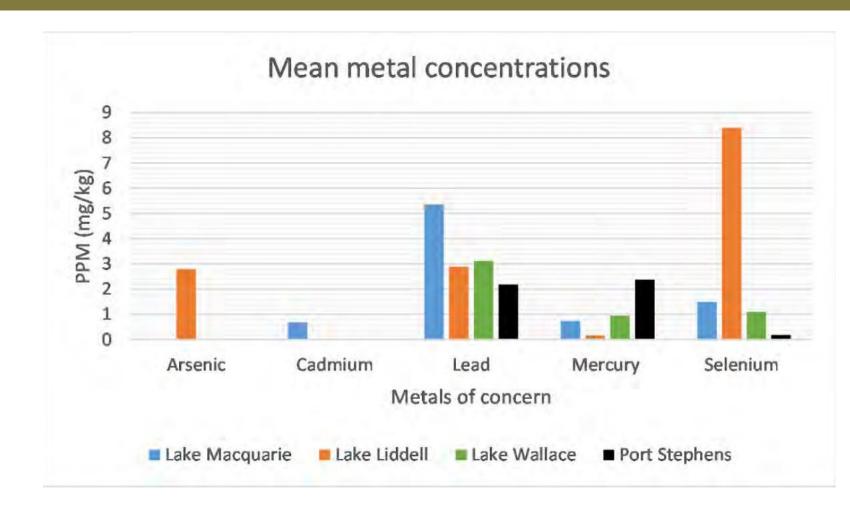
Liddell Environmental Site Assessment

- Arsenic, cadmium, lead, nickel and selenium in excess of the NHMRC drinking water values in groundwater across the site.
- Lead, selenium and nickel exceeded NHMRC recreational water guidelines in some areas.
- Substantial exceedances (above an order of magnitude of background) boron, cadmium, lead, nickel, selenium, zinc at the ash dam boundary.


Bayswater Environmental Site Assessment

- Pikes Gully ash dam Boron, cadmium, copper, lead, manganese, nickel, and zinc in excess drinking water guidelines. Lead and nickel above the recreational use guidelines.
- Ravensworth Rehabilitation Area ash dump in contact with regional groundwater flow.
- Impacts observed in the other areas within this catchment would be minor contributors to the overall potential impacts arising from the ash dams.

HCEC sediment testing: Bayswater and Liddell, 2020


HCEC collected water and sediment samples from waterways draining AGL's Bayswater and Liddell ash dumps in July 2020.

Results for Lake Liddell sediment included: Selenium - 3mg/kg Arsenic - 19 mg/kg Lead - 9 mg/kg

Toxic Habitat: Heavy metal impacts on water birds near NSW coal fired power stations

Half of all birds from which we sampled feathers were potentially suffering health impacts from heavy metals emitted by coalfired power stations.

Results summary: Bird feather study

Lake Macquarie

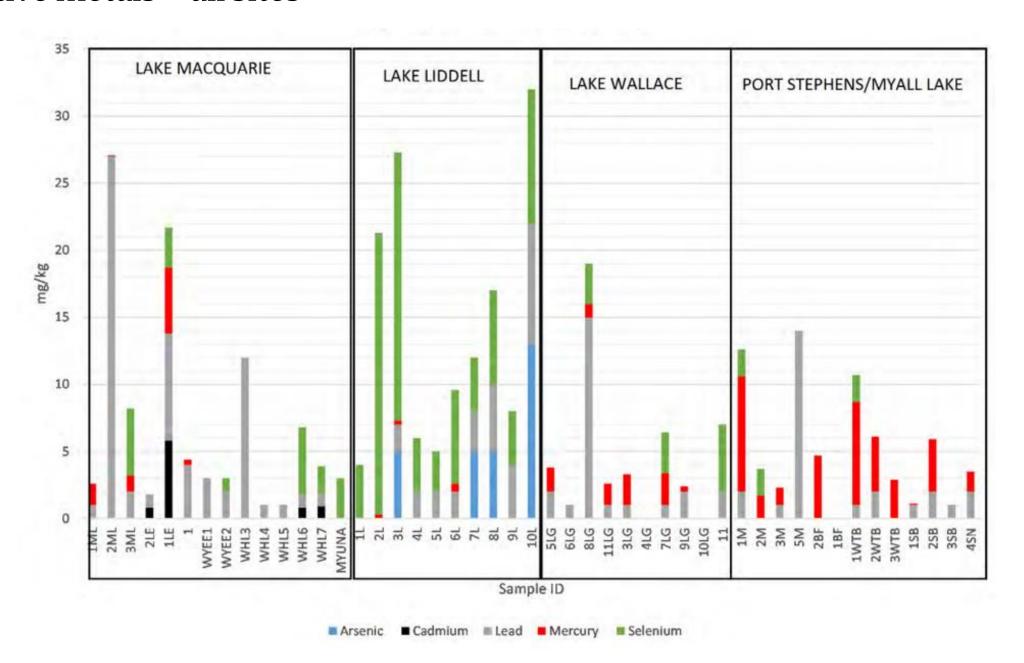
Significant concentrations of lead were found in all the waterbird feathers.

Lake Wallace

Seven of the nine feathers collected from Lake Wallace contained detectable concentrations of lead, mercury, and selenium.

Seven feathers had detectable lead. One almost six times the adverse health impact threshold.

Three of the nine feathers contained detectible selenium. All three were above adverse health impact thresholds


Lake Liddell

Selenium was found in all the feathers collected from Lake Liddell. Many in excess of estimated health impact thresholds.

Arsenic was found in 4/10 feathers from Lake Liddell. Feather from the other sites had no detectable arsenic.

Highest concentrations of arsenic, lead, and selenium was taken from an adult Black Swan carcass.

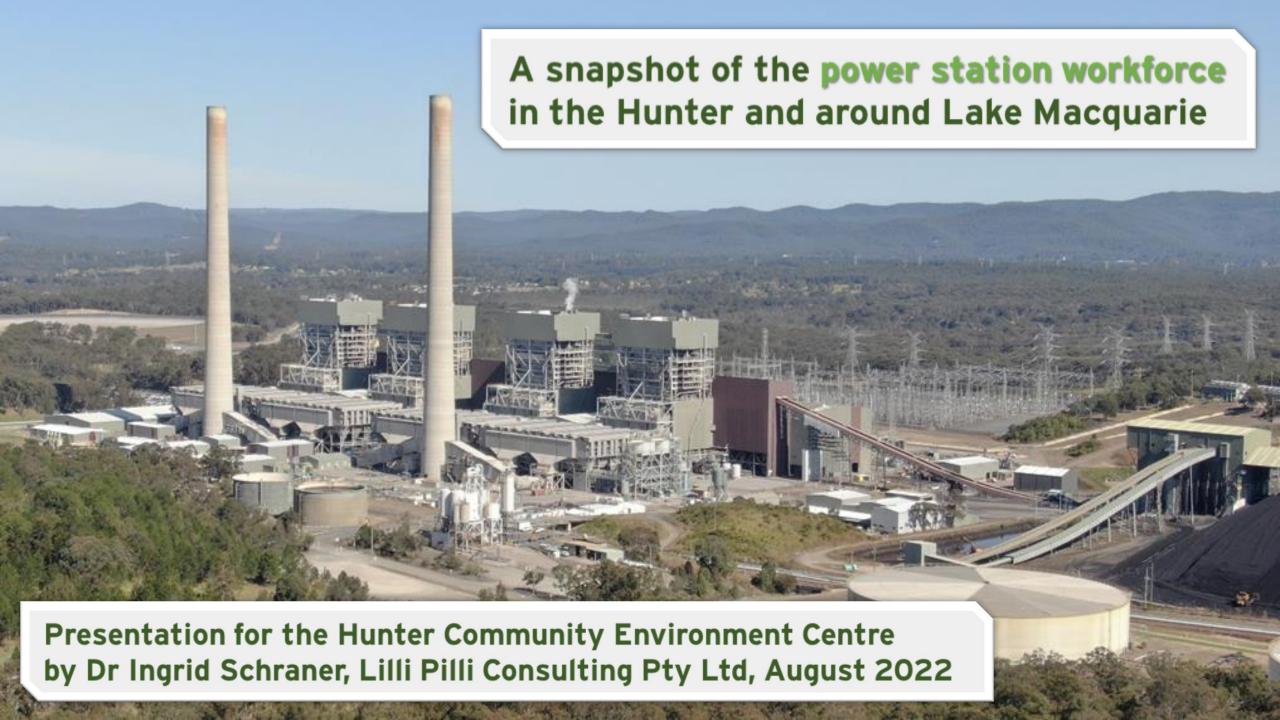
Cumulative metals – all sites

Annual metal leaching from NSW ash

Zinc	5t
Copper	3t
Selenium	3t
Chromium	2t
Arsenic	1.6t
Nickel	681kg
Nickel	681kg
Cadmium	193kg
Lead	80kg
Mercury	40kg

·			NSW coal-fired power stations					Estimated annual	
Metal (mg/k -	Metal (mg/k - ppm)		2	3	12	13	Mean	leachate (kg)	
							ppm		
Arsenic	As	12	4	6.6	12	43	16	1,634	
Boron	В	25	56	89	75	80	65	44,428	
Barium	Ba	393	420	653	393	510	474	29,668	
Berillium	Be	22	15	4	9	6	11	1,473	
Cadmium	Cd	0.4	0.9	0.25	0.44	0.35	0	193	
Cobalt	Со	11	10	6	11	38	15	220	
Chromium	Cr	50	40	18	45	72	45	2,017	
Copper	Cu	52	50	28	47	151	66	2,940	
Gernanium	Ge	40	18	5	10	10	17	2,998	
Mercuy	Hg	0.02	0.03	0.15	0.12	0.22	0	39	
Lithium	Li	180	28	48	58	106	84	12,540	
Manganese	Mn	88	200	899	321	413	384	7,939	
Molybdenum	Мо	8	5	5	6	10	7	10,802	
Nickel	Ni	41	30	11	24	70	35	681	
Lead	Pb	59	60	48	68	48	57	78	
Antimony	Sb	2.9	2.3	3.1	3.9	2.9	3	760	
Selenium	Se	5.2	4.7	2.5	3.5	3.7	4	3,068	
Tin	Sn	10	12	6	10	11	10	13	
Vanadium	V	128	120	49	109	172	116	10,896	
Tungsten	W	5	7	6	6	3	5	1,805	
Zinc	Zn	108	86	67	124	142	105	5,210	
Zirconium	Zr	600	440	250	400	450	428	14	
TOTALS								139,416	

Critical Minerals in NSW ashes


\$21b Alumina 2.2Mt \$13b Germanium 3,650t \$1.2b 18,500t Lithium \$285m Nickel 7,740t \$235m 94,000t Zircon Cobalt \$197m 3,340t \$180m Copper 14,500t

		NSW coal-fired power stations						Price per	Resources	
Metal (mg/k - ppm)		1	2	3	12	13	Mean ppm	USD/Ton	(tonnes) in 220Mt fly ash	Resource value AUD
High Purity							20%	6,500	2,200,000	21b
Alumina							2070	0,300	2,200,000	
Arsenic	As	12	4	6.6	12	43	16			-
Boron	В	25	56	89	75	80	65	750	14,300	16m
Barium	Ва	393	420	653	393	510	474		104,236	-
Berillium	Ве	22	15	4	9	6	11	3,500	2,464	13m
Cadmium	Cd	0.4	0.9	0.25	0.44	0.35	0	650	103	98,378
Cobalt	Со	11	10	6	11	38	15	40,000	3,344	197m
Chromium	Cr	50	40	18	45	72	45	9,000	9,900	131m
Copper	Cu	52	50	28	47	151	66	8,500	14,432	180m
Gernanium	Ge	40	18	5	10	10	17	2,370,000	3,652	13b
Mercuy	Hg	0.02	0.03	0.15	0.12	0.22	0		24	-
Lithium	Li	180	28	48	58	106	84	45,000	18,480	1.2b
Manganese	Mn	88	200	899	321	413	384	1,000	84,524	124m
Molybdenun	Мо	8	5	5	6	10	7	26,000	1,496	57m
Nickel	Ni	41	30	11	24	70	35	25,000	7,744	286m
Lead	Pb	59	60	48	68	48	57	2,300	12,452	42m
Antimony	Sb	2.9	2.3	3.1	3.9	2.9	3	12,000	664	12m
Selenium	Se	5.2	4.7	2.5	3.5	3.7	4	650	862	824,023
Tin	Sn	10	12	6	10	11	10	40,000	2,156	127m
Vanadium	V	128	120	49	109	172	116	650	25,432	24m
Tungsten	W	5	7	6	6	3	5	6,000	1,188	11m
Zinc	Zn	108	86	67	124	142	105	3,200	23,188	110m
Zirconium	Zr	600	440	250	400	450	428	1,700	94,160	235m
TOTALS								AU\$36b		

The power station workforce in the Hunter and Lake Macquarie

Dr. Ingrid Schraner *Economist*

Power station workforce

Workforce Liddell & Bayswater: 620

Geographical distribution of coal-fired power stations

BAYSWATER P/S

Workforce Eraring 350

Workforce Vales Point 260

2016 Census Data "Electricity Generation"
Hunter Valley, Lake Macquarie, Central Coast

Where the majority of the "Electricity Generation" workforce lives

2016 Census Data	Central Coast (Vales Point p/s)	Newcastle & Lake Macquarie (Eraring p/s)	Hunter Valley (Bayswater & Liddell p/s)
Lake Macquarie	30%	60%	4%
Central Coast	60%	20%	
Muswellbrook		- Nom!	33%
Singleton	"Electricity Ger	workers	24%
Maitland	= power station & sub-conti	ractors	10%
Cessnock	& Sub-come		10%
Newcastle		10%	4%

* SA4 Statistical Area Level 4 ** POW Point of Work

Workforce age structure in 2016

** POW Point of Work				
2016 Census SA4* (POW)**	Central Coast (Vales Point p/s)	Hunter Valley excl. Newcastle (Bayswater & Liddell p/s)	Newcastle & Lake Macquarie (Eraring p/s)	Total
15 – 49 years	39%	61%	67 %	58% or ~700
50 – 64 years	52 %	33%	30%	36% or ~440
Total workforce	260 or 20%	620 or 50%	350 or 30%	1,230 or 100%

Power stations: early retirement funding for less than 440 people However: local economy needs 1,230 new jobs – not only 700

Electricity Generation All Industries

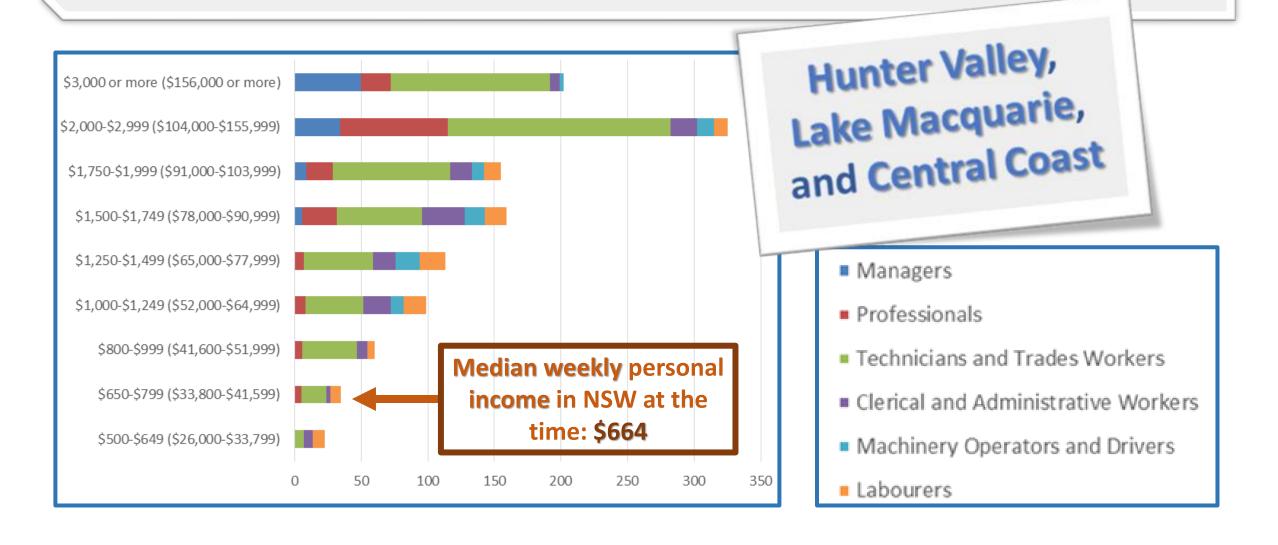
Occupations in Hunter Valley, Lake Macquarie, and Central Coast

1/2 of the power

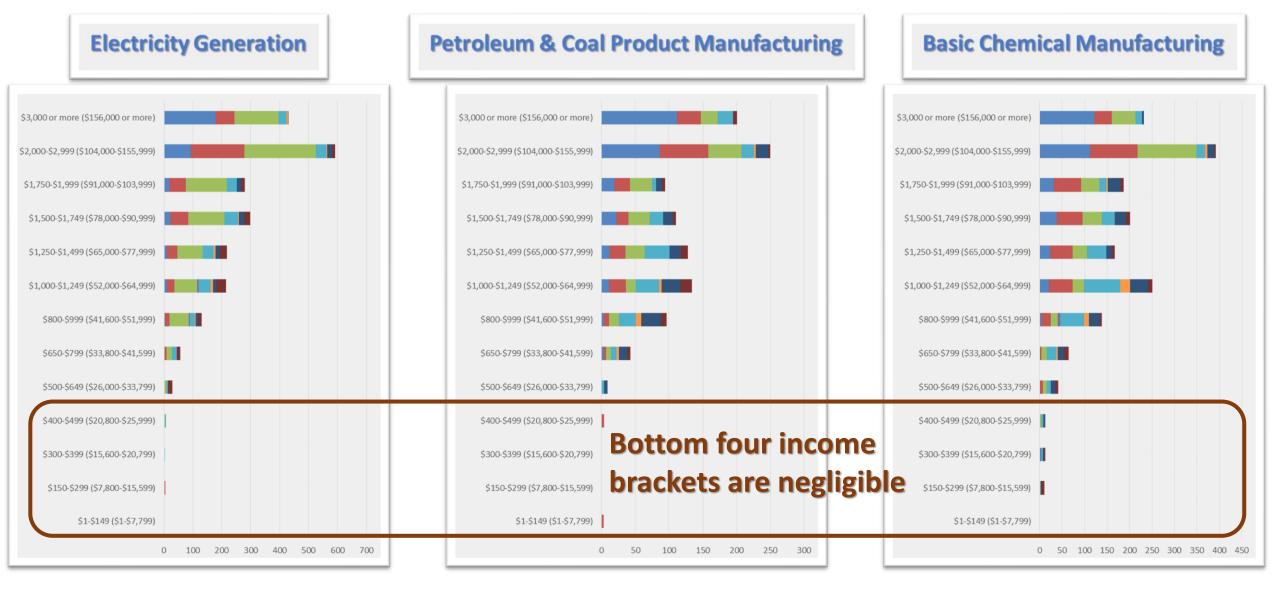
station workforce

Managers

Professionals


Technicians and Trades Workers

Clerical and Administrative Workers


- Machinery Operators and Drivers
- Labourers

3/4 of the power station workforce

Income structure by occupation in Electricity Generation

Income structure by occupation (NSW)

A successful Flagship Project

- 300 jobs for each local economy, all above median income,
- Half the jobs for Tradies, at least half of them in top 3 income brackets (\$91,000/year or more) Sizeable apprenticeship programs for all trades
 - Career paths to top management in all trades
 - Project to be integrated in local economy
 - Low carbon footprint and ongoing social licence

Address from Justin Page

Hunter Jobs Alliance, Former NSW State Secretary, Electrical Trades Union (ETU)

Address from Cory Wright

NSW State Secretary, Australian Manufacturing Workers Union (AMWU), Hunter Jobs Alliance

Starting to empty coal-ash dams

Dr Ingrid Schraner Co-Founder Wilco Envirotech

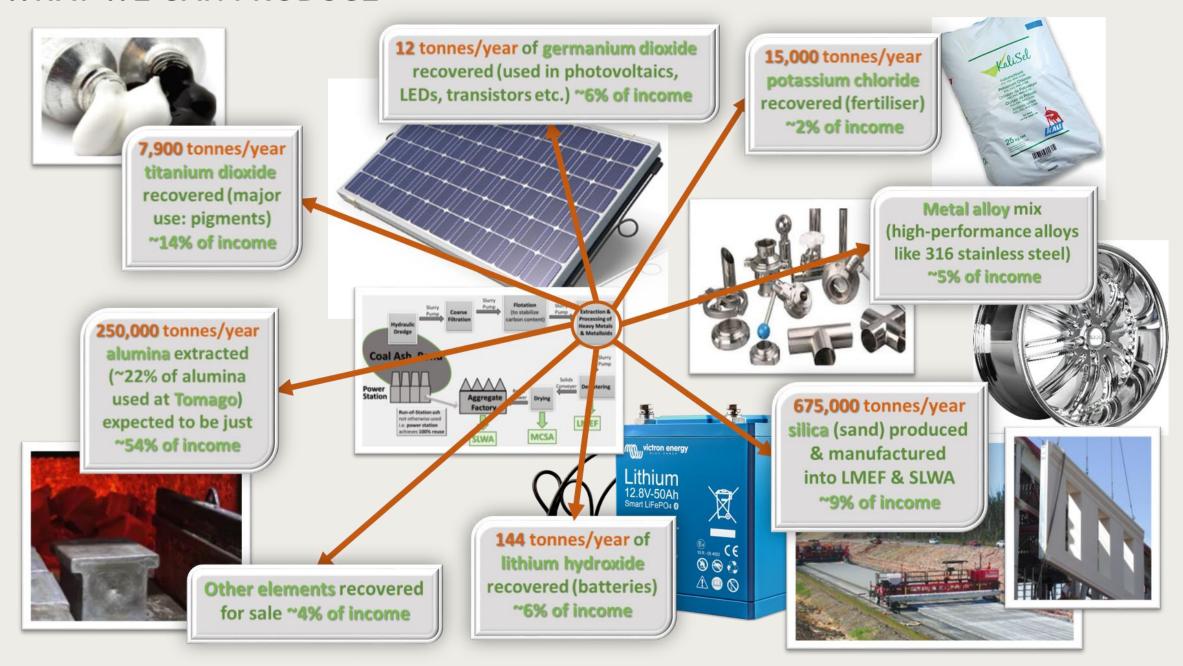
CONCEPT PACK

from the 2022 Accenture Venture Studio a part of WWF Australia's Innovate 2 Regenerate Challenge

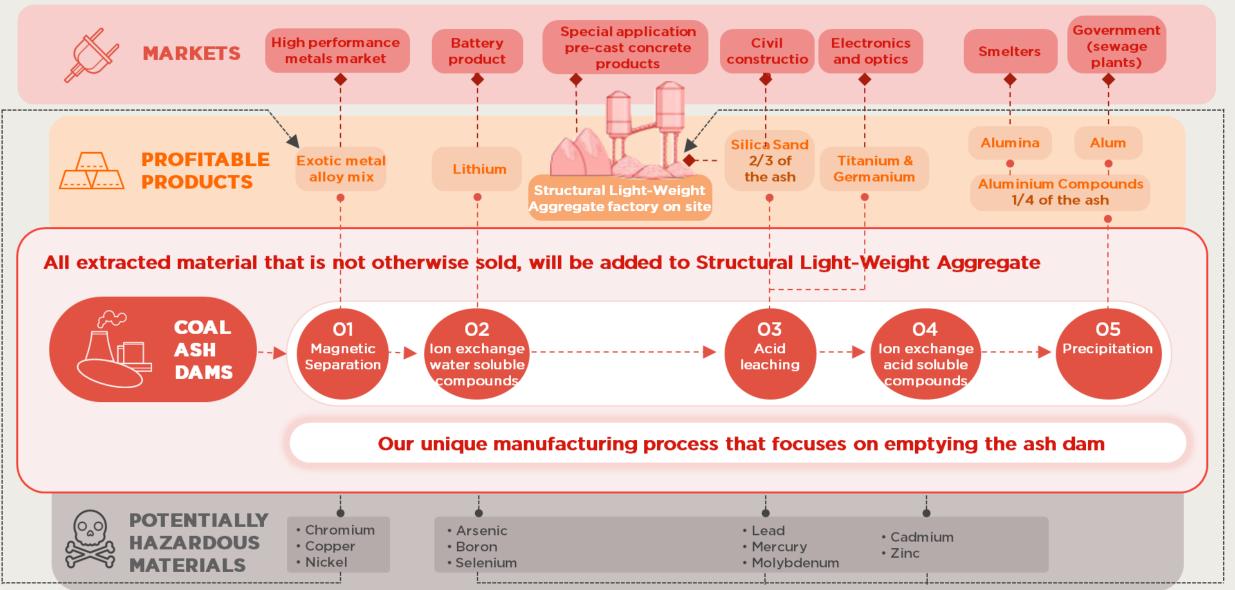
HOW IT WORKS

Our Process

We use a novel combination of established chemical processes and existing equipment from the mining and chemical industries to empty coal-ash dams across Australia and manufacture environmentally safe products.



We work with coal-fired power stations to build advanced chemical manufacturing plants and structural lightweight aggregate factories.


The sale of valuable minerals will fund the processing of potentially hazardous elements into environmentally safe products, serving well-established markets with large growth potential.

WHAT WE CAN PRODUCE

OUR PATENTED PROCESS

How we turn industrial waste into a palette of valuable & safe products, emptying the entire dam.

HOW IT WORKS

Our Impact

A facility that processes one million tonnes of coal-ash and employs some 330 people - in jobs that have comparable occupational and remuneration characteristics to the jobs in coal-fired power stations.

With 5% of the commercial profits we will fund a not-for-profit organisation that will enable local communities to develop, manage and own projects with a focus on First Nations, youth and women-led projects.

OUR REGENERATION PLATFORM

5%

OUR COMPANY AND PROCESS

Our focus on supporting the regeneration of communities and their environments

OUR NOT-FOR-PROFIT ORGANISATION

A replicable model for mainstream businesses to be part of the circularity of wealth with limited risks and fully community controlled projects.

Environment

A novel manufacturing process that empties the whole ash dam and re-uses all components of the ash, setting the highest standards for modern chemical manufacturing.

WHERE WE PROVIDE IMPACT

re. source

Powered by Wilco Envirotech CAPCITY BUILDING

PROJECT SUBMISSION

FUNDING

5% of profits given back to enable communities around us to regenerate themselves and their environments

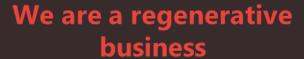
Communities

Enable First Nations, youth and women groups to identify, develop, manage and own their projects, so that they can regenerate themselves and their environments.

Youth & their organisations

Women & their organisations

First Nations People & their organisations


Keeping a Skilled Workforce

Creating local jobs that make use of the skilled workforce at power stations, invest in apprenticeships and research & development, collaborate with the local university and TAFE colleges - be the place where people want to work.

DISTINGUISHING FEATURES

We give back more than we take – through a model that empowers communities to be in control, without putting undue risks on our business.

We <u>re.source</u> a not-for-profit organisation that enables communities to formulate their priorities, develop their projects, and successfully manage and own them.

We care about our environment

We developed a novel process to extract all of the potentially hazardous material and all the material that can become a <u>re.source</u> for others – until all the coalash has been safely used up and the local communities can regenerate their environments.

We create good jobs for our communities

Half of a power station's workforce used to be local trades people. We <u>re.source</u> our workforce from here, locally - slightly shifting together from electrical to chemical engineering, but with the same high-quality and high-remuneration jobs.

We are building circular economies

We use power station waste as our key <u>re.source</u>, together with their workforce.

We support modern manufacturing industries, from local lithium battery production to greener aluminium smelting, from solar panel production to specialist precast concrete products.

And we circulate the wealth created, together with our local communities.

NEXT STEPS

- ☐ Awaiting result of grant application (BCSD Fund, Regional NSW):
 - Testing of ash in dams, independent lab testing of patented process
 - Detailed market analysis for products to be manufactured
 - Business case according to NSW Government guidelines
- □ Planning for small-scale operating plant (FY 2023-24, ~\$2m)
 - Design work for the small-scale factory, including all necessary approvals
 - Building an Alliance of businesses behind re.source & its Regeneration Platform
- ☐ Building the small-scale operating plant (2nd half 2024, \$10-20m)
 - Demonstrate scalability & mitigate process risk
 - Fine-tune processes & equipment, address issues as they arise
- ☐ Operating the small-scale operating plant (calendar 2025)
 - Iron out operational & process issues, confirm redundancies needed
 - Confirm & expand off-take arrangements for products produced
 - Finalise commercial arrangements within Alliance, raise funding through IPO
- ☐ Full-scale operating plant (from 2026, \$500m \$1b)

INTERMISSION

Questions & discussion

Thank you

